Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of the Dilution Effects on Particle Size Measurement from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0220
A study of particle size distributions was conducted on a Cummins M11 1995 engine using the Scanning Mobility Particle Sizer (SMPS) instrument in the baseline and downstream of the Catalyzed Particulate Filter (CPF). Measurements were made in the dilution tunnel to investigate the effect of primary dilution ratio and mixture temperature on the nuclei and accumulation mode particle formation. Experiments were conducted at two different engine modes namely Mode 11 (25% load - 311 Nm, 1800 rpm) and Mode 9 (75% load - 932 Nm, 1800 rpm). The nanoparticle formation decreased with increasing dilution ratios for a constant mixture temperature in the baseline as well as downstream of the CPF II for Mode 11 condition. At Mode 9 condition in the baseline, the dilution ratio had a little effect on the nanoparticle formation, since the distribution was not bimodal and was dominated by accumulation mode particles.
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

Inertial Contributions to the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0909
Wall-flow Diesel particulate filters operating at low filtration velocities usually exhibit a linear dependence between the filter pressure drop and the flow rate, conveniently described by a generalized Darcy's law. It is advantageous to minimize filter pressure drop by sizing filters to operate within this linear range. However in practice, since there often exist serious constraints on the available vehicle underfloor space, a vehicle manufacturer is forced to choose an “undersized” filter resulting in high filtration velocities through the filter walls. Since secondary inertial contributions to the pressure drop become significant, Darcy's law can no longer accurately describe the filter pressure drop. In this paper, a systematic investigation of these secondary inertial flow effects is presented.
Technical Paper

Noise and Emission Reduction Strategies for a Snowmobile

2000-09-11
2000-01-2573
The following paper discusses alternative strategies for reducing noise and emission production from a two-stroke snowmobile. Electric, two-stroke and four-stroke solutions were analyzed and considered for entry in the Clean Snowmobile Challenge (CSC) 2000. A two-stroke solution was utilized primarily due to time constraints. Complete snowmobile competition results are provided. The electric solution, while the most effective at reducing emissions, is negatively impacted by weight and cost. A modified two-stroke solution, limited by cost and complexity, does not provide the required improvements in emissions. A four-stroke solution reduces noise and emissions and provides an acceptable trade-off between noise, emissions, performance and cost.
Technical Paper

Using a Manufacturing Process Classification System for Improved Environmental Performance

2000-03-06
2000-01-0020
In terms of manufacturing processes and systems, decision-makers may encounter difficulty in making environmentally friendly choices. This difficulty arises largely because of the nascency of environmentally responsible manufacturing. There is a sparsity of environmental information on processes and a variety of seemingly unconnected tools, methods, concepts, etc. To help decisions-makers understand the nature of a process and identify the appropriate tools/methods that may be most suited to reducing environmental impact, a classification system for manufacturing processes is established. Methods and tools for environmentally responsible manufacturing are then identified for each class. Two examples are presented to show how the new classification system may be applied in environmentally responsible manufacturing.
Technical Paper

A Study of the Character and Deposition Rates of Sulfur Species in the EGR Cooling System of a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3566
Various measurement techniques were employed to quantify sulfuric acid deposition levels and concentration of sulfuric acid in the condensate from the recirculated exhaust gas heat exchanger of a 1995 Cummins M11 heavy-duty diesel engine. Methods employed included a modified version of the sulfur species sampling system developed by Kreso et al. (1)*, rinsing the heat exchanger, and experiments employing a condensate collection device (CCD). The modified sampling system was applied to the inlet and outlet of the heat exchanger in order to quantify the changes in various sulfur compounds. Doped sulfur fuel (3300 to 4000 ppm S) was used to increase the concentrations of the various oxides of sulfur (SOx). These tests were performed at mode 9 of the old EPA 13-mode test cycle (1800 RPM, 932N*m) with 17-20% exhaust gas recirculation (EGR) at two EGR outlet temperatures: 160°C and 103°C.
Technical Paper

A Computational Model Describing the Performance of a Ceramic Diesel Particulate Trap in Steady-State Operation and Over a Transient Cycle

1999-03-01
1999-01-0465
A model for calculating the trap pressure drop, various particulate properties, filtration characteristics and trap temperatures was developed during the steady-state and transient cycles using the theory originated by Opris and Johnson, 1998. This model was validated with the data obtained from the steady-state cycles run with an IBIDEN SiC diesel particulate filter. To evaluate the trap experimental filtration efficiency, raw exhaust samples were taken upstream and downstream of the trap. A trap scaling and equivalent comparison model was developed for comparing different traps at the same volume and same filtration area. Using the model, the trap pressure drop data obtained from different traps were compared equivalently at the same trap volume and same filtration area. The pressure drop performance of the IBIDEN SiC trap compared favorably to the previously tested NoTox SiC and the Cordierite traps.
Technical Paper

A Study of the Effects of Exhaust Gas Recirculation on Heavy-Duty Diesel Engine Emissions

1998-05-04
981422
The effects of exhaust gas recirculation (EGR) on heavy-duty diesel emissions were studied at two EPA steady-state operating conditions, old EPA mode 9* (1800 RPM, 75% Load) and old EPA mode 11 (1800 RPM, 25% Load). Data were collected at the baseline, 10% and 16% EGR rates for both EPA modes. The study was conducted using a 1995 Cummins M11-330E heavy-duty diesel engine and compared to the baseline emissions from the Cummins 1988 and 1991 L10 engines. The baseline gas-, vapor- and particle-phase emissions were measured together with the particle size distributions at all modes of operation. The total particulate matter (TPM) and vapor phase (XOC) samples were analyzed for physical, chemical and biological properties. The results showed that newer engines with electronic engine controls and higher injector pressures produce TPM decreases from the 1988 to 1991 to 1995 engines with the solids decreasing more than the soluble organic fraction (SOF) of TPM.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

The Performance of a Spark-Ignited Stratified-Charge Two Stroke Engine Operating on a Kerosine Based Aviation Fuel

1997-09-08
972737
This study examines the feasibility of broadening the fuel capabilities of a direct-injected two-stroke engine with stratified combustion. A three cylinder, direct-injected two-stroke engine was modified to operate on JP-5, a kerosene-based jet fuel that is heavier, more viscous, and less volatile than gasoline. Demonstration of engine operation with such a fuel after appropriate design modifications would significantly enhance the utilization of this engine in a variety of applications. Results have indicated that the performance characteristics of this engine with jet fuel are similar to that of gasoline with respect to torque and power output at low speeds and loads, but the engine's performance is hampered at the higher speeds and loads by the occurrence of knock.
Technical Paper

Research Advances in Dry and Semi-Dry Machining

1997-02-24
970415
The current trend in the automotive industry is to minimize/eliminate cutting fluid use in most machining operations. Research is required prior to achieving dry or semi-dry machining. Issues such as heat generation and transfer, thermal deformation and fluid lubricity related effects on tool life and surface roughness determine the feasibility of dry machining. This paper discusses recent advances in achieving dry/semi-dry machining. As the first step, research has been conducted to investigate the actual role of fluids (if any) in various machining operations. A predictive heat generation model for orthogonal cutting of visco-plastic material was created. A control volume approach allowed development of a thermal model for convective heat transfer during machining. The heat transfer performance of an air jet in dry machining was explored. The influence of machining process variables and cutting fluid presence on chip morphology was investigated through designed experiments.
Technical Paper

High Performance Auto Parts Could be Produced Using CastCon Manufacturing Process

1997-02-24
970429
High performance auto parts such as aluminum composite cladding aluminum brake and Ti/Ti3/Al joined exhaust valve with localized Ti+TiC composite coating could be produced using a new manufacturing method - the CastCon process. The aluminum composite cladding aluminum brake consists of an aluminum alloy body with a cladding of SiC and graphite particulate filled aluminum composite on the friction surface of a brake disk or a drum. This structure can ensure an over-all light weight and integral strength and ductility. The SiC particulate in the cladding composite increases abrasion resistance and the graphite particulate provides required lubrication. The cladding can be as thick as desired. There is a flexibility in the manufacturing process for selecting SiC and graphite loading volumes as well as particulate size and shape. This allows the part to be engineered to achieve maximum performance.
Technical Paper

A Study of the Regeneration Characteristics of Silicon Carbide and Cordierite Diesel Particulate Filters Using a Copper Fuel Additive

1997-02-24
970187
The purpose of this research was to study the pressure drop profiles and regeneration temperature characteristics of Silicon Carbide (SiC) filters with and without a copper-based additive in the fuel, and also to compare their performance with two cordierite traps designated as EX-47 and EX-80. The collection of the particulate matter inside the trap imposes a backpressure on the engine which requires a periodic oxidation or regeneration of the particulate matter. The presence of copper additive in the fuel reduces the particulate ignition temperature from approximately 500 to 375°C. Two SiC systems were tested during this research. The first system consisted of one 14 L SiC trap, while the second system, the dual trap system (DTS), consisted of two 12 L SiC traps mounted in parallel. The test matrix included two types of regeneration tests, controlled and uncontrolled and three levels of Cu fuel additive (0, 30, and 60 ppm).
Technical Paper

A Theoretical and Experimental Study of the Regeneration Process in a Silicon Carbide Particulate Trap Using a Copper Fuel Additive

1997-02-24
970188
The purpose of this study was to investigate the pressure drop and regeneration characteristics of a silicon carbide (SiC) wall-flow diesel particulate filter. The performance of a 25 μm mean pore size SiC dual trap system (DTS) consisting of two 12 liter traps connected in parallel in conjunction with a copper (Cu) fuel additive was evaluated. A comparison between the 25 μm DTS and a 15 μm DTS was performed, in order to show the effect of trap material mean pore size on trap loading and regeneration behavior. A 1988 Cummins LTA 10-300 diesel engine was used to evaluate the performance of the 15 and 25 μm DTS. A mathematical model was developed to better understand the thermal and catalytic oxidation of the particulate matter. For all the trap steady-state loading tests, the engine was run at EPA mode 11 for 10 hours. Raw exhaust samples were taken upstream and downstream of the trap system in order to determine the DTS filtration efficiency.
Technical Paper

A Study of the Regeneration Process in Diesel Particulate Traps Using a Copper Fuel Additive

1996-02-01
960136
The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 °C to 375 °C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled (trap regeneration initiated at full load rated speed after which the engine was cut to idle) conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration.
Technical Paper

The Effect of Fuel and Engine Design on Diesel Exhaust Particle Size Distributions

1996-02-01
960131
The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H2O and H2SO4 vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine's particle size distributions. The results indicated that nuclei mode particles (0.0075-0.046 μm) are formed in the dilution tunnel and consist of more than 80% H2O-H2SO4 particles when using the 1988 engine and 0.29 wt% sulfur fuel.
Technical Paper

An Automated Patternator for Fuel Injector Sprays

1996-02-01
960108
The spray pattern of a fuel injector is a key factor in the mixing of the fuel with the air. One effective means of determining the fuel distribution in the spray is to collect the fuel in tubes, from various regions of the spray. The amount of fuel in the tubes is measured. These measurements are used to create diagrams and curves which graphically represent the fuel distribution within the spray. The term “Patternator” has come to mean a device which determines the spray distribution, in the sense that the device determines the pattern of the spray. The objective of this paper is to describe the operation, features, and performance of an automated patternator designed and built at Michigan Technological University for Ford Motor Company. The patternator system was constructed for rapid determination of the spray pattern in order to expedite the development of automotive port fuel injectors.
Technical Paper

Catalytic Oxidation Model Development of the Volatile Reactor Assembly Unit of the International Space Station Water Processor

1995-07-01
951630
The destruction of organic contaminants in waste water for closed systems, such as that of the International Space Station, is crucial due to the need for recycling the waste water. A cocurrent upflow bubble column using oxygen as the gas phase oxidant and packed with catalyst particles consisting of a noble metal on an alumina substrate is being developed for this process. This paper addresses the development of a plug-flow model that will predict the performance of this three phase reactor system in destroying a multicomponent mixture of organic contaminants in water. Mass balances on a series of contaminants and oxygen in both the liquid and gas phases are used to develop this model. These mass balances incorporate the gas-to-liquid and liquid-to-particle mass transfer coefficients, the catalyst effectiveness factor, and intrinsic reaction rate.
Technical Paper

Strain Path Effects on the Modified FLD Caused by Variable Blank Holder Force

1995-02-01
950695
The objective in this research is to investigate the effects of variable blank holder force (VBHF) on the material formability, due to its effect on the strain path. It is found in a recent study [9] that VBHF does not significantly affect the overall trend of the strain path. This strain path in deep drawing process is linear for the materials in the flange and under punch face, and is roughly bi-linear for the material around the punch nose. The second segment of the strain path in the punch nose region is plane-strain. VBHF, however, affects the strain ratio ρ1 = ε2/ε1 of the first segment of the bi-linear strain path. These effects, especially ρ1, on limit strain were studied using M-K method. A strain path dependent modified forming limit diagram (MFLD) was calculated based on the actual strain path. It is found that the MFLD is strongly dependent on ρ1.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
X